9. Only $\frac{\text { linear }}{\text { are straight lines. }}$ equations have graphs that
10. The product of the slopes of two nonvertical perpendicular lines is \qquad _.

For each equation, find the slope. If the slope is undefined, state this.
11. $y-9=3 \quad 0$
12. $x+1=7$
13. $8 x=6$ Undefined
14. $y-3=5 \quad 0$
15. $3 y=28 \quad 0$
16. $19=-6 y \quad 0$
17. $9+x=12 \quad$ Undefined
18. $2 x=18$ Undefined
19. $2 x-4=3$ Undefined
20. $5 y-1=16 \quad 0$
21. $5 y-4=35 \quad 0$
23. $4 y-3 x=9-3 x \quad 0$
22. $2 x-17=3$

Undefined
25. $5 x-2=2 x-7$
24. $x-4 y=12-4 y$

Undefined
27. $y=-\frac{2}{3} x+5 \quad-\frac{2}{3}$
26. $5 y+3=y+9 \quad 0$

Graph.
29. $y=5$
31. $x=3$
33. $f(x)=-2$
35. $3 x=-15$
37. $3 \cdot g(x)=15$
30. $x=-1$
32. $y=2$
34. $g(x)=-3$
36. $2 x=10$
28. $y=-\frac{3}{2} x+4-\frac{3}{2}$
it

$$
\text { 38. } 3-f(x)=2
$$

Find the intercepts. Then graph by using the intercepts, if possible, and a third point as a check.
39. $x+y=4$
40. $x+y=5$
41. $f(x)=2 x-1$
42. $f(x)=3 x+12$
43. $3 x+5 y=-15$
44. $5 x-4 y=20$
45. $2 x-3 y=18$
46. $3 x+2 y=-18$
47. $3 y=-12 x$
48. $5 y=15 x$
49. $f(x)=3 x-7$
50. $g(x)=2 x-9$
51. $5 y-x=5$
52. $y-3 x=3$
53. $0.2 y-1.1 x=6.6$
54. $\frac{1}{3} x+\frac{1}{2} y=1$

For each function, determine which of the given viewing windows will show both intercepts.
55. $f(x)=20-4 x \quad$ (c)
a) $[-10,10,-10,10]$
b) $[-5,10,-5,10]$
c) $[-10,10,-10,30]$
d) $[-10,10,-30,10]$
56. $g(x)=3 x+7$ (a)
a) $[-10,10,-10,10]$
b) $[-1,15,-1,15]$
c) $[-15,5,-15,5]$
d) $[-10,10,-30,0]$
57. $p(x)=-35 x+7000$
(d)
a) $[-10,10,-10,10]$
b) $[-35,0,0,7000]$
c) $[-1000,1000,-1000,1000]$
d) $[0,500,0,10,000]$
58. $r(x)=0.2-0.01 x$ (b)
a) $[-10,10,-10,10]$
b) $[-5,30,-1,1]$
c) $[-1,1,-5,30]$
d) $[0,0.01,0,0.2]$

Without graphing, tell whether the graphs of each pair of equations are parallel.
59. $x+8=y$,
60. $2 x-3=y$,

$$
y-x=-5 \text { Yes }
$$

$$
y-2 x=9 \quad \text { Yes }
$$

61. $y+9=3 x$,
$3 x-y=-2 \quad$ Yes
62. $y+8=-6 x$,
$-2 x+y=5$ No
63. $f(x)=3 x+9$,
$2 y=-6 x-2$ No
64. $f(x)=-7 x-9$,
$-3 y=21 x+7$
Yes

Without graphing, tell whether the graphs of each pair of equations are perpendicular.
65. $f(x)=4 x-3$,
$4 y=7-x \quad$ Yes
66. $2 x-5 y=-3$,
$2 x+5 y=4$ No
67. $x+2 y=7$,
$2 x+4 y=4 \quad$ No
68. $y=-x+7$,
$f(x)=x+3$ Yes

For each equation, (a) determine the slope of a line parallel to its graph, and (b) determine the slope of a line perpendicular to its graph.
69. $y=\frac{7}{8} x-3$
70. $y=-\frac{9}{10} x+4$
71. $y=-\frac{1}{4} x-\frac{5}{8}$
72. $y=\frac{1}{6} x-\frac{3}{11}$
73. $20 x-y=12$
74. $y+15 x=30$
75. $x+y=4$
76. $x-y=19$

Write an equation for a linear function parallel to the given line with the given y-intercept.
77. $y=3 x-2 ;(0,9) \quad f(x)=3 x+9$
78. $y=-5 x+7 ;(0,-2) \quad f(x)=-5 x-2$
79. $2 x+y=3 ;(0,-5) \quad f(x)=-2 x-5$
80. $3 x=y+10 ;(0,1) \quad f(x)=3 x+1$
81. $2 x+5 y=8 ;\left(0,-\frac{1}{3}\right) \quad f(x)=-\frac{2}{5} x-\frac{1}{3}$
82. $3 x-6 y=4 ;\left(0, \frac{4}{5}\right) \quad f(x)=\frac{1}{2} x+\frac{4}{5}$

An9! 83. $3 y=12 ;(0,-5) \quad f(x)=-5$
84. $5=10 y ;(0,12) \quad f(x)=12$

Write an equation for a linear function perpendicular to the given line with the given y-intercept.
85. $y=x-3 ;(0,4) \quad f(x)=-x+4$
86. $y=2 x-7 ;(0,-3) \quad f(x)=-\frac{1}{2} x-3$
\square Answers to Exercises 29-54 and 69-76 are on p. IA-5.
87. $2 x+3 y=6 ;(0,-4) \quad f(x)=\frac{3}{2} x-4$
88. $4 x+2 y=8 ;(0,8) \quad f(x)=\frac{1}{2} x+8$
89. $5 x-y=13 ;\left(0, \frac{1}{5}\right) \quad f(x)=-\frac{1}{5} x+\frac{1}{5}$
90. $2 x-5 y=7 ;\left(0,-\frac{1}{8}\right) \quad f(x)=-\frac{5}{2} x-\frac{1}{8}$

Determine whether each equation is linear. Find the slope

 of any nonvertical lines.91. $5 x-3 y=15 \quad$ Linear; $\frac{5}{3}$
92. $3 x+5 y+15=0$ Linear; $-\frac{3}{5}$
93. $16+4 y=10 \quad$ Linear; 0
94. $3 x-12=0$
Linear; line is vertical
95. $x y=10$ Not linear
96. $y=\frac{10}{x} \quad$ Not linear
97. $3 y=7(2 x-4)$
98. $2(5-3 x)=5 y$
99. $g(x)=\frac{1}{x} \quad$ Not linear
100. $f(x)=x^{3}$
101. $\frac{f(x)}{5}=x^{2} \quad$ Not linear
102. $\frac{g(x)}{2}=3+x$

TW 103. Engineering. Wind friction, or air resistance, increases with speed. Following are some measurements made in a wind tunnel. Plot the data and explain why a linear function does or does not give an approximate fit.

Velocity (in kilometers per hour)	Force of Resistance (in newtons)
10	3
21	4.2
34	6.2
40	7.1
45	15.1
52	29.0

N 104. Meteorology. Wind chill is a measure of how cold the wind makes you feel. Below are some measurements of wind chill for a $15-\mathrm{mph}$ breeze. How can you tell from the data that a linear function will give an approximate fit?

Temperature	15-mph Wind Chill
$30^{\circ} \mathrm{F}$	$19^{\circ} \mathrm{F}$
$25^{\circ} \mathrm{F}$	$13^{\circ} \mathrm{F}$
$20^{\circ} \mathrm{F}$	$6^{\circ} \mathrm{F}$
$15^{\circ} \mathrm{F}$	$0^{\circ} \mathrm{F}$
$10^{\circ} \mathrm{F}$	$-7^{\circ} \mathrm{F}$
$5^{\circ} \mathrm{F}$	$-13^{\circ} \mathrm{F}$
$0^{\circ} \mathrm{F}$	$-19^{\circ} \mathrm{F}$

Source: National Oceanic \& Atmospheric Administration, as reported in USA TODAY.com, 2004

SKILL REVIEW

To prepare for Section 2.4, review multiplying fractions and simplifying expressions (Sections 1.2 and 1.3).
Simplify.
105. $-\frac{3}{10}\left(\frac{10}{3}\right)[1.2]-1$
106. $2\left(-\frac{1}{2}\right)[1.2]-1$
107. $-3[x-(-1)][1.3]-3 x-3$
108. $-10[x-(-7)][1.3]-10 x-70$
109. $\frac{2}{3}\left[x-\left(-\frac{1}{2}\right)\right]-1[1.3] \quad \frac{2}{3} x-\frac{2}{3}$
110. $-\frac{3}{2}\left(x-\frac{2}{5}\right)-3[1.3]-\frac{3}{2} x-\frac{12}{5}$

SYNTHESIS

TW 111. Jim tries to avoid working with fractions as often as possible. Under what conditions will graphing using intercepts allow him to avoid fractions? Why?
112. Under what condition(s) will the x - and y-intercepts of a line coincide? What would the equation for such a line look like?
113. Give an equation, in standard form, for the line whose x-intercept is 5 and whose y-intercept is -4 . $4 x-5 y=20$
114. Find the x-intercept of $y=m x+b$, assuming that $m \neq 0 . \quad\left(-\frac{b}{m}, 0\right)$
In Exercises 115-118, assume that r, p, and s are nonzero constants and that x and y are variables. Determine whether each equation is linear.
115. $r x+3 y=p^{2}-s \quad$ Linear
116. $p y=s x-r^{2} y-9$ Linear
117. $r^{2} x=p y+5$ Linear
118. $\frac{x}{r}-p y=17 \quad$ Linear
119. Suppose that two linear equations have the same y-intercept but that equation A has an x-intercept that is half the x-intercept of equation B. How do the slopes compare?
The slope of equation B is $\frac{1}{2}$ the slope of equation A.
Consider the linear equation
$a x+3 y=5 x-b y+8$.
120. Find a and b if the graph is a horizontal line passing through $(0,4) . \quad a=5, b=-1$
121. Find a and b if the graph is a vertical line passing through $(4,0) . \quad a=7, b=-3$
120. Since a vertical line is not the graph of a function, many graphing calculators cannot graph equations of the form $x=a$. Some graphing calculators can draw vertical lines using the DRAW menu. Use the

