138 CHAPTER 2 Functions, Linear Equations, and Models

- 9. Only <u>linear</u> equations have graphs that are straight lines.
- The product of the slopes of two nonvertical perpendicular lines is ______.

For each equation, find the slope. If the slope is undefined, state this.

11. $y - 9 = 3$ 0	12. $x + 1 = 7$
13. $8x = 6$ Undefined	14. $y - 3 = 5$ 0
15. $3y = 28 0$	16. $19 = -6y = 0$
17. $9 + x = 12$ Undefined	18. $2x = 18$ Undefined
19. $2x - 4 = 3$ Undefined	20. $5y - 1 = 16 0$
21. $5y - 4 = 35 = 0$	22. $2x - 17 = 3$
23. $4y - 3x = 9 - 3x = 0$	24. $x - 4y = 12 - 4y$
25. $5x - 2 = 2x - 7$	26. $5y + 3 = y + 9 = 0$
27. $y = -\frac{2}{3}x + 5 -\frac{2}{3}$	28. $y = -\frac{3}{2}x + 4 -\frac{3}{2}$
Graph.	
29. $y = 5$:	30. $x = -1$.
31. $x = 3$.	32. $y = 2$.
33. $f(x) = -2$.	34. $g(x) = -3$.
35. $3x = -15$.	36. $2x = 10$:
37. $3 \cdot g(x) = 15$.	38. $3 - f(x) = 2$.

Aha!

Find the intercepts. Then graph by using the intercepts, if possible, and a third point as a check.

39. $x + y = 4$.	40. $x + y = 5$.
41. $f(x) = 2x - 1$	42. $f(x) = 3x + 12$.
43. $3x + 5y = -15$.	44. $5x - 4y = 20$.
45. $2x - 3y = 18$:	46. $3x + 2y = -18$.
47. $3y = -12x$:	48. $5y = 15x$.
49. $f(x) = 3x - 7$.	50. $g(x) = 2x - 9$:
51. $5y - x = 5$.	52. $y - 3x = 3$.
53. $0.2y - 1.1x = 6.6$.	54. $\frac{1}{3}x + \frac{1}{2}y = 1$.

For each function, determine which of the given viewing windows will show both intercepts.

55. f(x) = 20 - 4x (c) **a)** $\begin{bmatrix} -10, 10, -10, 10 \end{bmatrix}$ **b)** $\begin{bmatrix} -5, 10, -5, 10 \end{bmatrix}$ **c)** $\begin{bmatrix} -10, 10, -10, 30 \end{bmatrix}$ **d)** $\begin{bmatrix} -10, 10, -30, 10 \end{bmatrix}$ **56.** g(x) = 3x + 7 (a) **a)** $\begin{bmatrix} -10, 10, -10, 10 \end{bmatrix}$ **b)** $\begin{bmatrix} -1, 15, -1, 15 \end{bmatrix}$ **c)** $\begin{bmatrix} -15, 5, -15, 5 \end{bmatrix}$ **d)** $\begin{bmatrix} -10, 10, -30, 0 \end{bmatrix}$

Answers to Exercises 29–54 and 69–76 are on p. IA-5.

2.3 HW

- **57.** p(x) = -35x + 7000 (d) **a)** [-10, 10, -10, 10] **b)** [-35, 0, 0, 7000] **c)** [-1000, 1000, -1000, 1000]**d)** [0, 500, 0, 10, 000]
- **58.** r(x) = 0.2 0.01x (b) **a)** $\begin{bmatrix} -10, 10, -10, 10 \end{bmatrix}$ **b)** $\begin{bmatrix} -5, 30, -1, 1 \end{bmatrix}$ **c)** $\begin{bmatrix} -1, 1, -5, 30 \end{bmatrix}$ **d)** $\begin{bmatrix} 0, 0.01, 0, 0.2 \end{bmatrix}$

Without graphing, tell whether the graphs of each pair of equations are parallel.

59. x + 8 = y,
y - x = -5 Yes**60.** 2x - 3 = y,
y - 2x = 9 Yes**61.** y + 9 = 3x,
3x - y = -2 Yes**62.** y + 8 = -6x,
-2x + y = 5 No**63.** f(x) = 3x + 9,
2y = -6x - 2 No**64.** f(x) = -7x - 9,
-3y = 21x + 7

Without graphing, tell whether the graphs of each pair of equations are perpendicular.

65. $f(x) = 4x - 3$,	66. $2x - 5y = -3$,
4y = 7 - x Yes	2x + 5y = 4 No
67. $x + 2y = 7$,	68. $y = -x + 7$,
2x + 4y = 4 No	f(x) = x + 3 Yes

For each equation, (a) determine the slope of a line parallel to its graph, and (b) determine the slope of a line perpendicular to its graph.

69. $y = \frac{7}{8}x - 3$.	70. $y = -\frac{9}{10}x + 4$
71. $y = -\frac{1}{4}x - \frac{5}{8}$:	72. $y = \frac{1}{6}x - \frac{3}{11}$.
73. $20x - y = 12$.	74. $y + 15x = 30$.
75. $x + y = 4$.	76. $x - y = 19$.

Write an equation for a linear function parallel to the given line with the given y-intercept.

77. y = 3x - 2; (0, 9) f(x) = 3x + 978. y = -5x + 7; (0, -2) f(x) = -5x - 279. 2x + y = 3; (0, -5) f(x) = -2x - 580. 3x = y + 10; (0, 1) f(x) = 3x + 181. $2x + 5y = 8; (0, -\frac{1}{3})$ $f(x) = -\frac{2}{5}x - \frac{1}{3}$ 82. $3x - 6y = 4; (0, \frac{4}{5})$ $f(x) = \frac{1}{2}x + \frac{4}{5}$ Anal 83. 3y = 12; (0, -5) f(x) = -584. 5 = 10y; (0, 12) f(x) = 12

Write an equation for a linear function perpendicular to the given line with the given y-intercept.

85. y = x - 3; (0, 4) f(x) = -x + 4**86.** y = 2x - 7; (0, -3) $f(x) = -\frac{1}{2}x - 3$ **87.** 2x + 3y = 6; (0, -4) $f(x) = \frac{3}{2}x - 4$ **88.** 4x + 2y = 8; (0, 8) $f(x) = \frac{1}{2}x + 8$ **89.** 5x - y = 13; $(0, \frac{1}{5})$ $f(x) = -\frac{1}{5}x + \frac{1}{5}$ **90.** 2x - 5y = 7; $(0, -\frac{1}{8})$ $f(x) = -\frac{5}{2}x - \frac{1}{8}$

Determine whether each equation is linear. Find the slope of any nonvertical lines.

91. $5x - 3y = 15$ Linear; $\frac{5}{3}$	92. $3x + 5y + 15 = 0$
93. $16 + 4y = 10$ Linear; 0	94. $3x - 12 = 0$ Linear; line is vertical
95. $xy = 10$ Not linear	96. $y = \frac{10}{x}$ Not linear
97. $3y = 7(2x - 4)$ Linear: $\frac{14}{2}$	98. $2(5-3x) = 5y$ Linear; $-\frac{6}{5}$
99. $g(x) = \frac{1}{x}$ Not linear	100. $f(x) = x^3$ Not linear
101. $\frac{f(x)}{5} = x^2$ Not linear	102. $\frac{g(x)}{2} = 3 + x$
	Linear; 2

№ 103. Engineering. Wind friction, or air resistance, increases with speed. Following are some measurements made in a wind tunnel. Plot the data and explain why a linear function does or does not give an approximate fit.

Velocity (in kilometers per hour)	Force of Resistance (in newtons)
10	3
21	4.2
34	6.2
40	7.1
45	15.1
52	29.0

104. Meteorology. Wind chill is a measure of how cold the wind makes you feel. Below are some measurements of wind chill for a 15-mph breeze. How can you tell from the data that a linear function will give an approximate fit?

Temperature	15-mph Wind Chill
30°F	19°F
25°F	13°F
20°F	6°F
15°F	0°F
10°F	- 7°F
5°F	-13°F
0°F	-19°F

Source: National Oceanic & Atmospheric Administration, as reported in USA TODAY.com, 2004

SKILL REVIEW

To prepare for Section 2.4, review multiplying fractions and simplifying expressions (Sections 1.2 and 1.3). Simplify.

105. $-\frac{3}{10}\left(\frac{10}{3}\right)$ [1.2] -1 **106.** $2\left(-\frac{1}{2}\right)$ [1.2] -1 **107.** -3[x - (-1)] [1.3] -3x - 3 **108.** -10[x - (-7)] [1.3] -10x - 70 **109.** $\frac{2}{3}[x - (-\frac{1}{2})] - 1$ [1.3] $\frac{2}{3}x - \frac{2}{3}$ **110.** $-\frac{3}{2}(x - \frac{2}{5}) - 3$ [1.3] $-\frac{3}{2}x - \frac{12}{5}$

SYNTHESIS

- № 111. Jim tries to avoid working with fractions as often as possible. Under what conditions will graphing using intercepts allow him to avoid fractions? Why?
- N 112. Under what condition(s) will the *x* and *y*-intercepts of a line coincide? What would the equation for such a line look like?
 - 113. Give an equation, in standard form, for the line whose x-intercept is 5 and whose y-intercept is -4. 4x - 5y = 20
 - 114. Find the x-intercept of y = mx + b, assuming that $m \neq 0$. $\left(-\frac{b}{m}, 0\right)$

In Exercises 115–118, assume that r, p, and s are nonzero constants and that x and y are variables. Determine whether each equation is linear.

115. $rx + 3y = p^2 - s$ Linear

116.
$$py = sx - r^2y - 9$$
 Linear

117.
$$r^2 x = py + 5$$
 Linear

118.
$$\frac{x}{r} - py = 17$$
 Linear

119. Suppose that two linear equations have the same *y*-intercept but that equation A has an *x*-intercept that is half the *x*-intercept of equation B. How do the slopes compare?

The slope of equation B is $\frac{1}{2}$ the slope of equation A. Consider the linear equation

$$ax + 3y = 5x - by + 8$$

- **120.** Find a and b if the graph is a horizontal line passing through (0, 4). a = 5, b = -1
- **121.** Find a and b if the graph is a vertical line passing through (4, 0). a = 7, b = -3
- **122.** Since a vertical line is not the graph of a function, many graphing calculators cannot graph equations of the form x = a. Some graphing calculators can draw vertical lines using the DRAW menu. Use the